CUERETIKEOWE

【背景·目的】

電子回路の高速化に伴って、基板内のCu配線の平坦化評価を実施、その条件を用いて作成したTEST基板にて伝送特性の評価を行った。

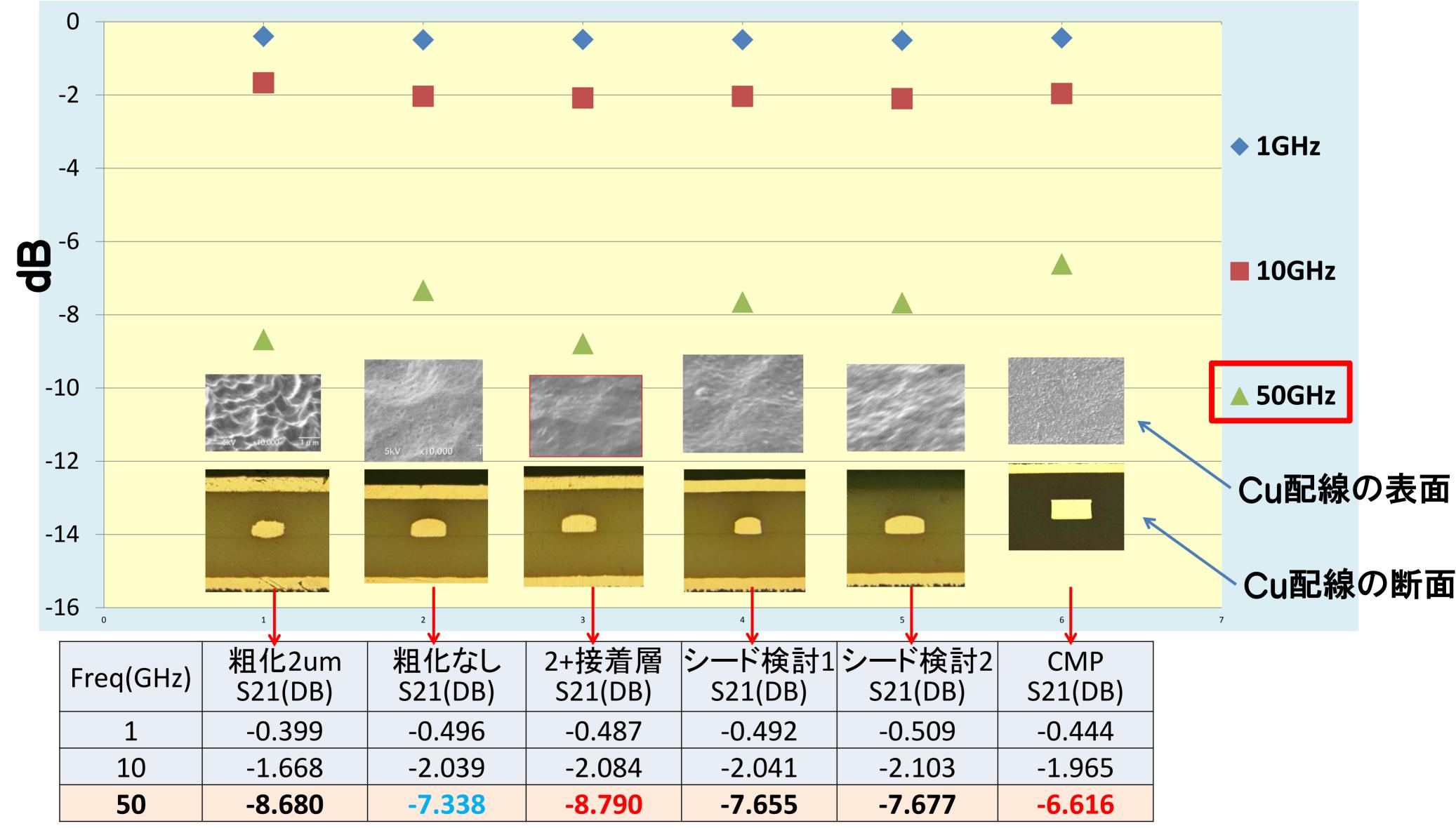
【設計·構造】

- ◆ストリップライン構造
 - •Bu材 t=80um(40um+40um)
 - -Cu配線厚さ(Signal) t=16um
 - 配線長さ L=34mm

評価用サンプル構造の概要(断面)

- 伝送特性評価装置
 - ⇒PNA-X N5245A 10MHz-50GHz

Cu配線への表面処理(平坦化プロセス)の条件


	条件名	表面粗さ
サンプル1	標準条件 (粗化2um)	Ra=0.30um
サンプル2	粗化なし	Ra=0.14um
サンプル3	粗化なし+接着層付与	Ra=0.14um
サンプル4	粗化なし +シードエッチ液検討①	Ra=0.14um
サンプル5	粗化なし +シードエッチ液検討②	Ra=0.17um
サンプル6	粗化なし + CMP平滑化(比較用)	Ra=0.04um

評価用サンプル構造の断面イメージ

【プロセスポイント】

◆各条件の伝送特性評価結果と表面粗度・断面形状の比較

- ▼表面粗度と伝送特性結果に相関を確認(粗度が高い程、伝送特性としては×)
- ▼低粗度での密着性改善のための接着層付与条件で、伝送特性が悪い結果

[今後の課題]

比較用の理想形状に近づけたCMP条件で、伝送特性の結果として極端な差は見られない。 また接着層付与条件で、接着層自体による伝送特性の低下が考えられる為、 構造・材料の見直しの上で再評価・確認予定